1,229 research outputs found

    Beating of exciton-dressed states in a single semiconductor InGaAs/GaAs quantum dot

    Get PDF
    We report picosecond control of excitonic dressed states in a single semiconductor quantum dot. A strong laser pulse couples the exciton and biexciton states, to form an Autler-Townes doublet of the neutral exciton transition. The Rabi-splitting, and hence the admixture of the dressed states follows the envelope of the picosecond control laser. We create a superposition of dressed states, and observe the resulting beat: a direct measurement of a Rabi oscillation in time delay rather than the usual power domain

    Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities

    No full text
    We demonstrate semiconductor quantum dots coupled to photonic crystal cavity modes operating in the visible spectrum. We present the design, fabrication, and characterization of two dimensional photonic crystal cavities in GaInP and measure quality factors in excess of 7500 at 680 nm. We demonstrate full control over the spontaneous emission rate of InP quantum dots and by spectrally tuning the exciton emission energy into resonance with the fundamental cavity mode we observe a Purcell enhancement of similar to 8. (C) 2010 American Institute of Physics. [doi:10.1063/1.3510469

    A Generic Agent Organisation Framework For Autonomic Systems

    No full text
    Autonomic computing is being advocated as a tool for managing large, complex computing systems. Specifically, self-organisation provides a suitable approach for developing such autonomic systems by incorporating self-management and adaptation properties into large-scale distributed systems. To aid in this development, this paper details a generic problem-solving agent organisation framework that can act as a modelling and simulation platform for autonomic systems. Our framework describes a set of service-providing agents accomplishing tasks through social interactions in dynamically changing organisations. We particularly focus on the organisational structure as it can be used as the basis for the design, development and evaluation of generic algorithms for self-organisation and other approaches towards autonomic systems

    Uplifted supersymmetric Higgs region

    Full text link
    We show that the parameter space of the Minimal Supersymmetric Standard Model includes a region where the down-type fermion masses are generated by the loop-induced couplings to the up-type Higgs doublet. In this region the down-type Higgs doublet does not acquire a vacuum expectation value at tree level, and has sizable couplings in the superpotential to the tau leptons and bottom quarks. Besides a light standard-like Higgs boson, the Higgs spectrum includes the nearly degenerate states of a heavy spin-0 doublet which can be produced through their couplings to the bb quark and decay predominantly into \tau^+\tau^- or \tau\nu.Comment: 14 pages; Signs in Eqns. (3.1) and (4.2) corrected, appendix include

    Yield risk in wheat production : a policy study for the Alentejo of Portugal

    Get PDF

    Unusual Dissolution Behavior of Tooth Enamel and Synthetic HAP Crystals Under High Partial Saturation Conditions

    Full text link
    The dissolution behavior of enamel and synthetic hydroxyapatite in acidic media possessing a high degree of partial saturation was found to be neither simple surface dissolution nor linear with time. Instead, a repetitive, stepwise dissolution pattern was observed. To explain this phenomenon, a model based upon a hypothesis that the crystals dissolve in a synchronized fashion was proposed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66946/2/10.1177_00220345770560051201.pd

    Control of polarization and mode mapping of small volume high Q micropillars

    Get PDF
    We show that the polarization of the emission of a single quantum dot embedded within a microcavity pillar of elliptical cross section can be completely controlled and even switched between two orthogonal linear polarizations by changing the coupling of the dot emission with the polarized photonic modes. We also measure the spatial profle of the emission of a series of pillars with different ellipticities and show that the results can be well described by simple theoretical modeling of the modes of an infinite length elliptical cylinder

    Monolithic integration of a quantum emitter with a compact on-chip beam-splitter

    Get PDF
    A fundamental component of an integrated quantum optical circuit is an on-chip beam-splitter operating at the single-photon level. Here, we demonstrate the monolithic integration of an on-demand quantum emitter in the form of a single self-assembled InGaAs quantum dot (QD) with a compact (>10 μm), air clad, free standing directional coupler acting as a beam-splitter for anti-bunched light. The device was tested by using single photons emitted by a QD embedded in one of the input arms of the device. We verified the single-photon nature of the QD signal by performing Hanbury Brown-Twiss measurements and demonstrated single-photon beam splitting by cross-correlating the signal from the separate output ports of the directional coupler

    Path-dependent initialization of a single quantum dot exciton spin in a nanophotonic waveguide

    Get PDF
    We demonstrate a scheme for in-plane initialization of a single exciton spin in an InGaAs quantum dot (QD) coupled to a GaAs nanobeam waveguide. The chiral coupling of the QD and the optical mode of the nanobeam enables spin initialization fidelity approaching unity in magnetic field B=1 T and >0.9 without the field. We further show that this in-plane excitation scheme is independent of the incident excitation laser polarization and depends solely on the excitation direction. This scheme provides a robust in-plane spin excitation basis for a photon-mediated spin network for quantum information applications

    Differential metabolism of deoxyribonucleosides by leukaemic T cells of immature and mature phenotype

    Full text link
    Experimental evidence has indicated that T lymphoblasts are more sensitive to deoxynucleoside toxicity than are B lymphoblasts. These data have led to the use of purine enzyme inhibitors as selective chemotherapeutic drugs in the treatment of T cell malignancies ranging from T cell acute lymphoblastic leukaemia to cutaneous T cell lymphomas. We have compared the toxicities of 2′-deoxyadenosine, 2′-deoxyguanosine, and thymidine for T cell lines derived from patients with T cell acute lymphoblastic leukaemia with those for mature T cell lines derived from patients with cutaneous T cell leukaemia/lymphoma. We have found that both deoxynucleosides are far less toxic to the mature T cell lies than to T lymphoblasts and that the mature cells accumulate much lower amounts of dATP and dGTP when exposed to deoxyadenosine and deoxyguanosine, respectively. Similar studies performed on peripheral blood cells from patients with T cell leukaemias of mature phenotype and on peripheral blood T cells demonstrate similar low amounts of deoxynucleotide accumulation. Measurements of the activities of several purine metabolizing enzymes that participate in deoxynucleoside phosphorylation or degradation do not reveal differences which would explain the toxicity of deoxynucleosides for immature, as compared to mature, T cells. We conclude that deoxynucleoside metabolism in leukaemic T cells varies with their degree of differentiation. These observations may be relevant to the design of chemotherapeutic regimes for T cell malignancies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72479/1/j.1365-2141.1985.tb04067.x.pd
    • …
    corecore